Visualizzazione post con etichetta sfere. Mostra tutti i post
Visualizzazione post con etichetta sfere. Mostra tutti i post

lunedì 11 dicembre 2017

“Pietroburgo” e il paradosso di Banach-Tarski.

La copertina dell'edizione di Adelphi

Come far passare la voglia di costruire ponti


Il moscovita Andrej Belyj, pseudonimo di Boris Nikolaevic Bugaev (1880-1934), è stato un poeta e romanziere, teorico del movimento simbolista in Russia nei primi decenni del ‘900. La sua opera più nota è il romanzo Pietroburgo, inizialmente pubblicato a puntate tra il 1913 e il 1914 e poi in forma rivista e abbreviata nel 1922 (la prima edizione italiana comparve da Garzanti nel 1961, con traduzione e saggio introduttivo di Angelo Maria Ripellino, e fu poi riedita nel 2014 da Adelphi). Secondo Vladimir Nabokov (1899-1977), Pietroburgo fa parte dei quattro più grandi capolavori del ventesimo secolo, accanto a l’Ulisse di Joyce, a La Metamorfosi di Kafka e Alla ricerca del tempo perduto di Proust. Nonostante tale prestigioso elogio, l’opera ha diviso la critica: a Trotsky non piacque, e altri non apprezzarono il suo stile modernista, le metafore insistite, l’atmosfera cupa e apocalittica. Per saperne di più invito a leggere la splendida recensione che scrisse Pietro Citati quando l’opera fu pubblicata da Adelphi.

La critica più recente (Citati lo accenna) ha messo in evidenza l’utilizzo frequente nel testo dell’immaginario matematico, il che non sorprende se si pensa che Belyj, oltre a essersi laureato in scienze naturali, era figlio di Nikolai Bugaev (1837-1903), allievo di Weierstrass e Liouville, fondatore della scuola matematica di Mosca, una delle più attive sullo scenario europeo del Novecento. Inoltre, suoi compagni di Università erano stati due studenti del padre: Nikolai Luzin (1883-1950), che avrebbe retto la scuola matematica moscovita per molti anni, e Pavel Florenskij (1882-1937), figura geniale del milieu spiritualista russo, matematico, prete ortodosso, scrittore, scienziato, filosofo e mistico. Anche Belyj fu a lungo influenzato da questo contesto, approdando all’antroposofia di Rudolf Steiner.

Una delle più ricorrenti immagini presenti in Pietroburgo è quella di una sfera che si espande e alla fine esplode. Ecco alcuni esempi, tratti dai pensieri del protagonista, Nikolaj Apollonovic Ableuchov:
“Il suo cuore prese a martellare e si espanse, mentre nel suo petto crebbe la sensazione di una sfera cremisi sul punto di rompersi in pezzi”
“la sua anima stava diventando la superficie di un’enorme bolla in rapida crescita, che si era gonfiata fino all’orbita di Saturno. Oh, oh, oh! Nikolaj Apollonovic fu percorso da brividi. Venti soffiarono sulla sua fronte. Tutto stava esplodendo”
Questa metafora è stata interpretata in vari modi, dall’ansia per una catastrofe imminente, personale o collettiva, a un simbolo della bomba che il protagonista si è impegnato a utilizzare per conto di un gruppo rivoluzionario contro il proprio padre, odiato e decrepito funzionario imperiale Apollon Apollonovic Ableuchov. Mancava, pensate un po’, un’ardita interpretazione matematica, che due ricercatori americani, Noah Giansiracusa e Anastasia Vasilyeva dello Swarthmore College (PA) hanno pubblicato il 16 ottobre scorso in un paper su ArXiv (From Poland to Petersburg: the Banach-tarski Paradox in Bely’s modernist novel).

Secondo i due autori, esiste un collegamento tra l’immagine della sfera in espansione e il cosiddetto paradosso di Banach-Tarski, che fu pubblicato una decina d’anni dopo la prima versione del romanzo (nel 1924). La sfera che si espande sarebbe in collegamento con il famoso, paradossale, teorema dei due matematici polacchi Stefan Banach e Alfred Tarski, di cui mi sono occupato in un articolo precedente, secondo il quale, applicando l’assioma della scelta, si può suddividere una sfera piena (una palla) nello spazio tridimensionale in 5 parti, in modo che sia possibile ricomporre con questi pezzi due sfere entrambe perfettamente identiche alla sfera iniziale prima della suddivisione. Una versione analoga dimostra che è possibile suddividere una sfera piccola (ad es. una pallina da golf) in modo tale che i pezzi ottenuti, una volta assemblati, possano ricomporsi in una sfera più grande, magari delle dimensioni di Giove.

Il teorema di Banach Tarski: la sfera iniziale viene suddivisa e poi ricomposta in due copie identiche a se stessa
Giansiracusa e Vasilyeva si chiedono se Belij possa essere stato influenzato da versioni originarie del teorema, giunte chissà come dalla Polonia a Mosca, o addirittura se la lettura di Pietroburgo possa aver ispirato Banach e Tarski. Essi stessi ammettono che la risposta è “probably not,” nondimeno si preoccupano di tracciare gli sviluppi storici che potrebbero aver creato queste coincidenze. La premessa contenuta nell’Abstract iniziale merita una citazione:
“Belij credeva nelle corrispondenze spirituali e nelle predizioni mistiche, così, allo stesso modo, esploriamo anche le (talvolta sorprendenti) coincidenze che uniscono Pietroburgo al paradosso di Banach-Tarski. Questo articolo è la vera storia, parte storia e parte mistero, di un legame improbabile tra matematica e letteratura”.
Belij durante il viaggio in Sicilia nel 1905
Dopo questa allarmante premessa, l’articolo procede affrontando il teorema da un punto di vista matematico, poi analizzando il contesto in cui nacque (il dibattito sui risultati di Cantor, sull’assioma della scelta e la nascita della cosiddetta Scuola Polacca) e l’ipotetico “ponte” che sarebbe stato rappresentato dalla forzata permanenza a Mosca di Waclaw Sierpinski (1882-1969), il quale, allora insegnante a Lublino e già famoso specialista degli insiemi cantoriani e paradossi geometrici, allo scoppio della Prima guerra mondiale (1914), si trovava in Russia con la famiglia. Poiché sia l’impero austriaco sia quello russo tentavano di utilizzare la questione polacca come arma politica, egli fu arrestato e internato in un campo di prigionia, ma poco dopo fu liberato grazie all'intervento dei matematici russi Dmitrij Egorov e Nikolaj Luzin (amico di Belij). Sierpinski trascorse così gli anni della guerra a Mosca, collaborando soprattutto con Luzin, fino a quando tornò in Polonia nel 1918.

Ora, il fatto che Luzin conoscesse sia Belij sia Sierpinski è un legame talmente lasco che Giansiracusa e Vasilyeva sono costretti ad ammettere che “le somiglianze (...) tra le sfere in espansione nell’opera di Belij e di Banach-Tarski sono semplicemente una coincidenza”, anche perché compaiono già nelle prime versioni di Pietroburgo, date alle stampe, come si è detto, prima dell’arrivo a Mosca di Sierpinski e, giova ripeterlo, assai prima del 1924, anno in cui comparve lo storico teorema di Banach e Tarski. Ce ne sarebbe abbastanza per alzare bandiera bianca e ritirarsi dopo un’onorevole sconfitta. Invece no. I due autori dell’articolo si fanno allora esperti in analisi del testo (per fortuna non in senso strutturalista: ci mancava anche quello), ma per riportare alcuni brani di Pietroburgo che presenterebbero somiglianze con il teorema e - udite! udite! - “alcune previsioni e coincidenze che riguardano Belij e che altri studiosi hanno notato”. Il brano più significativo è questo:
“Una bomba è una rapida espansione di gas. La sfericità dell’espansione evocò in lui un terrore primordiale, a lungo dimenticato. Nella sua fanciullezza era stato soggetto a deliri. Nella notte, una piccola bolla elastica si materializzava talvolta di fronte a lui e rimbalzava intorno - fatta forse di gomma, forse della materia di strani mondi. [...] Gonfiandosi orribilmente, spesso assumeva la forma di un grasso compagno sferico. Questo grasso compagno, essendo diventato una sfera molesta, continuava a espandersi, espandersi ed espandersi e minacciava di precipitare addosso a lui. [...] Ed esplodeva in pezzi. Nikolenka incominciava a gridare cose senza senso: di incominciare anche lui a diventare sferico, che era uno zero, che tutto in lui si stava azzerando - azzerandO - zerO - O - O”.
E allora? Dov’è la sfera che si decompone in cinque parti e si duplica? Dove sono queste parti composte da insiemi di punti, che in realtà non possiedono alcuna misura? Queste nuvole di punti senza numero, senza volume, sono riconoscibili nell’accenno allo zero che si ritrova nel brano citato? Non ci sono, ma esistono invece, nell’ultima sezione dell’articolo, delle “coincidenze cosmiche”:
- il rivoluzionario doppiogiochista che consegna al protagonista la piccola bomba preparata per assassinare il padre si chiama Lippanchenko. Ebbene, Belij dichiarò di aver modellato la sua figura su quella dell’agente provocatore Evno Fishelevich Azef, che aveva lavorato sia per gli zaristi e i rivoluzionari. Più tardi Azef si rifugiò a Berlino e, dopo la pubblicazione di Pietroburgo, assunse proprio lo pseudonimo di Lipchenko!
- il sole svolge un ruolo importante nel pensiero antroposofico, e Belij morì nel 1934 per un’insolazione contratta in Crimea!
- la sfera di Banach-Tarski viene suddivisa in cinque parti, e ci sono almeno cinque frasi nel romanzo (riportate) in cui si cita il numero cinque in un contesto geometrico!

Con l’argomentum numerologicum termina l’articolo di Giansiracusa e Vasilyeva e il vostro recensore si chiede se i due ci sono o ci fanno. Ci troviamo di fronte ad un livello infinitamente inferiore alla “manifesta ciarlataneria” che Sokal imputava agli strutturalisti francesi e ai loro seguaci americani. Posso augurarmi che si tratti di un gioco perverso, ma vedo nelle note che un articolo simile i due l’hanno già pubblicato sulla rivista Math. Intelligencer. Su queste basi, per questa volta, mi tocca dar ragione a quell’amico che continua a dire che tra scienza e umanesimo non esiste alcun ponte, nessun periglioso “passaggio a Nord-Ovest”, ma solo un abisso profondo e insuperabile come il Grand Canyon.



(scritto con la penna intinta nel veleno durante la prima nevicata d’inverno)

giovedì 7 febbraio 2013

Palle da cannone e pacchetti di sfere

La leggenda vuole che la notte precedente il 29 ottobre 1618, prima di essere decapitato per una presunta congiura contro re Giacomo I, dopo una dura detenzione durata quasi tre lustri, Sir Walter Raleigh abbia scritto la poesia The Lie, di cui questa è una strofa: 

Tell men of high condition, 
That manage the estate, 
Their purpose is ambition; 
Their practice only hate. 
And if they once reply, 
Then give them all the lie. 

In realtà l’opera era già comparsa in una raccolta miscellanea nel 1608 (e in un manoscritto del British Museum datato 1596), e probabilmente non è neanche sua. Mi piace tuttavia l’attribuzione romantica a un personaggio come Raleigh, favorito di Elisabetta I d’Inghilterra, esploratore, poeta, spia, corsaro, nonché colui che introdusse in Gran Bretagna la patata e il tabacco. 

Un’altra attribuzione a Raleigh, questa più veritiera, è quella di aver posto per primo il problema delle palle da cannone, il prototipo di quello generale dell’impacchettamento delle sfere.. Durante la sfortunata spedizione per insediare una colonia inglese sull’isola di Roanoke, vicino alla Virginia, tra il 1585 e il 1586, Raleigh chiese al matematico Thomas Harriot, che sulla nave fungeva da naturalista, astronomo e interprete (di lingua algonchina!), se era possibile sapere quante palle di cannone vi fossero in una piramide a base quadrata da esse formata, senza contarle una ad una. A quei tempi si costruiva un telaio di legno di forma triangolare o quadrata dentro il quale si impilavano le palle a piramide. In entrambi i casi si tratta di una struttura cubica centrata sulle facce, orientata diversamente rispetto al piano orizzontale. 

Harriot era il tipico intellettuale polivalente dell’epoca: matematico, fisico, astronomo, etnografo, fu in corrispondenza con Keplero. La relazione del viaggio in Virginia, in cui forniva anche gli elementi fondamentali della lingua dei nativi algonchini, uscì nel 1588 e resta l’unico testo pubblicato mentre egli era in vita. Alla sua morte lasciò ai suoi esecutori testamentari il compito di pubblicare un suo testo d’algebra, ma essi lo fecero rimaneggiandolo e togliendo le parti più innovative. Così l’Artis Analyticae Praxis, uscito postumo nel 1631, fu privato di inedite intuizioni sulle radici dei numeri negativi e sui numeri complessi. Il resto della sua opera scientifica, più di 400 fogli vergati con minuscola grafia, non fu stampato, finché non fu riscoperto tra il XIX e il XX secolo. Gli appunti astronomici di Harriot offrono la testimonianza delle sue precoci osservazioni telescopiche: essi contengono una mappa della Luna disegnata intorno al 1611, osservazioni dei satelliti di Giove fatte nello stesso periodo di quelle che Galileo pubblicò nel Sidereus Nuncius del marzo 1610, e appunti sulle osservazioni delle macchie solari che egli fece con il telescopio il 18 dicembre 1610, cioè qualche mese prima di quanto dichiarato da Galileo. 


Harriot non ebbe difficoltà a risolvere il problema posto da Raleigh. Se k è il numero di palle da cannone poste lungo il lato della piramide a base quadrata, il loro numero totale n è dato da:

  



Ad esempio, se k = 6, allora n = 91. I numeri che rappresentano le soluzioni dell’equazione sono chiamati numeri piramidali quadrati. I primi sono 1, 5, 14, 30, 55, 91, 140, 204, 285, 385, 506, 650, 819 (Sequenza A000330 della OEIS-On-Line Encyclopedia of Integer Sequences). 

Un’altra versione, più specifica, del problema delle palle da cannone chiede qual è il più piccolo numero di palle che può essere disposto in un quadrato n × n su cui poi si impilano altri quadrati di palle a formare una piramide alta k palle. In pratica, qual è il più piccolo quadrato che è anche un numero piramidale? La risposta è la soluzione più piccola dell’equazione diofantea:

 

Da cui risulta che k = 24, n = 70, che corrisponde a 4.900 palle. Nel 1875 Edouard Lucas congetturò che questa è anche l’unica soluzione possibile, e, nel 1918, George Neville Watson provò che aveva ragione. 



Più in generale, ci si può chiedere che cosa succede se la base della piramide è un poligono regolare qualsiasi. In pratica, quali sono i numeri piramidali triangolari, pentagonali, esagonali, ecc.? La formula generale, per una base a forma di poligono regolare con r lati è data da:


Nel caso particolare di una piramide a base triangolare (tetraedro), la formula diventa:




L’interesse di Thomas Harriot per le sfere non si limitava solo alle palle da cannone. Egli era un atomista nel senso classico del termine (come Democrito e Lucrezio), e pensava che la comprensione di come si impacchettano le sfere era fondamentale per capire come sono disposti i costituenti fondamentali della natura. Egli svolse numerosi esperimenti di ottica e divenne un’autorità in questo campo. Così, quando, nel 1609, Keplero gli scrisse per avere informazioni per dare maggiori base scientifiche alle sue teorie ottiche, l’inglese non solo gli inviò dati sul comportamento dei raggi luminosi che passano attraverso il vetro, ma gli espose anche le sue idee sul problema della disposizione delle sfere. 

L’effetto di queste idee deve essere stato notevole, visto che il tedesco pubblicò nel dicembre 1611 un libretto dal titolo Strena sue de nive sexangula (Sul fiocco di neve a sei angoli), che avrebbe influenzato la scienza della cristallografia nei due secoli successivi e che conteneva la cosiddetta congettura di Keplero sul modo più efficace di impacchettare le sfere. Egli sosteneva che non esiste alcun modo di sistemare delle sfere nello spazio con densità media superiore a quella dell'impacchettamento cubico a facce centrate o a quella dell'impacchettamento esagonale. La densità η di questi due modi di sistemare le sfere vale:

 

Secondo Keplero, nessun altro impacchettamento di sfere può avere una densità superiore.

Per quanto sia di facile comprensione, la congettura di Keplero si è dimostrata di assai difficile dimostrazione, resistendo ai tentativi di Gauss (1831) e di molti altri. Nel 1900 Hilbert la pose nella sua famosa lista dei 23 problemi non risolti della matematica. Nel 1953 l’ungherese Fejes Tóth dimostrò che il problema di determinare la massima densità di tutte le disposizioni di sfere, regolari ed irregolari, poteva essere ridotto a un numero finito, anche se molto grande, di calcoli, aprendo la strada a una dimostrazione per esaustione attraverso l’uso del computer. Tale dimostrazione è stata trovata da Thomas Hales nel 1998, applicando sistematicamente i metodi della programmazione lineare: essa consisteva di 250 pagine di annotazioni e 3 Gigabyte di programmi, dati e risultati. Molti matematici storcono tuttavia il naso quando sentono parlare di dimostrazioni ottenute grazie alle capacità di calcolo dei computer (lo abbiamo visto a proposito del problema dei quattro colori). I referee (presieduti dal figlio di Tóth) annunciarono nel 2003 che la commissione era “certa al 99%” che la dimostrazione fosse corretta, ma che non poteva garantire l’esattezza di tutti i calcoli fatti al computer. Hales si è allora impegnato a fornire una dimostrazione formale, che ancora deve arrivare.